Виды винтов. Винты: виды головок и применение Сколько видов винтов используется при сборке

Как мы уже говорили в одной из предыдущих наших статей , который широко используется в различных отраслях. Особенно часто их применяют в строительстве.

В отличии от болтов винт не требует дополнительных элементов , что ускоряет и удешевляет крепёжные работы.

Глобально винты можно разделить на крепёжные и установочные (используются для взаимной фиксации соединяемых деталей).

Наиболее обширное распространение получила классификация винтов по форме конца стержня, головки, типу шлица. Но при этом наиболее практичной остаётся разделение по стандартам DIN/ГОСТ.

И так давайте рассмотрим основные виды винтов:

Винт барашковый DIN 316 – используется для сантехнических работы, в машиностроении и других отраслях, где необходима быстрая и частая сборка-разборка соединения. Производится из нержавеющей и высокопрочной стали, латуни.

Винт установочный DIN 913 – имеет плоский конец и является аналогом винту ГОСТ 11074-93, винт имеет полную метрическую резьбу и шестигранную головку. Главное назначение данное винта - соединение деталей и конструкций в машиностроении, приборостроении и других отраслях промышленности. DIN 913 используется вместе с шайбами или гайками. Производят данные винты, как правило, из гальванической оцинкованной стали.

Винт установочный DIN 914 - винт имеет конический конец и соответствует ГОСТу 8878-93.

Штифт установочный DIN 915 – идентичен винту ГОСТ 11075-93. Имеет конец цилиндрической формы для точной фиксации деталей относительно друг друга.

Винт установочный DIN 916 с засверленным острием и внутренним шестигранником. Является точным аналогом ГОСТ 28964-91.

Винт DIN 965 – винт с потайной головкой, является аналогом винту ГОСТ 17475-80. Отличается крестообразным шлицем и потайной головкой. Производится из нержавеющей стали.

Винт DIN 967 – представляетс собой винт для мебельной фурнитуры обладает полной метрической резьбой, полукруглой головкой с фланцем и крестообразным шлицем, соответствует ГОСТ 11644-75. Применяется в сочетании с гайками и шайбами.

Штифт пружинный DIN 1481 – является аналогом винта ГОСТ 14229-93. Представляет собой разрезной пружинный цилиндр с фаской. Как правило, используется в приборостроении и машиностроении. Производится из оксидированной стали.

Винт метрический высокопрочный DIN 7380 с внутренним шестигранником и полукруглой головкой. Используется вместе с шайбами, гайками, втулками. Наибольшее распространение получил в мебельном производстве.

Винт DIN 7985 с крестообразным шлицем и цилиндрической головкой является аналогом ГОСТ 17473-80.

Винт мебельный метрический DIN 7991 обладает внутренним шестигранником под ключ и потайной головкой, относится к разряду высокопрочных метизов. Используется в строительстве, а так же в различных отраслях промышленности и производства. Применяется совместно с шайбами, гайками и втулками.


Назначение и виды авиационных силовых установок.

Силовая установка предназначена для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.

Сила тяги создается установкой, состоящей из двигателя, движителя (винта) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).

В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания, которые преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта..

На самолетах Як-18Т, Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35.

На многих спортивных самолётах используются двигатели Rotax:

КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ

Винты классифицируются:

по числу лопастей - двух-, трех-, четырех- и многолопастные;

по материалу изготовления - деревянные, металлические, смешанные;

по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и правого вращения;

по расположению относительно двигателя - тянущие, толкающие;

по форме лопастей - обычные, саблевидные, лопатообразные;

по типам - фиксированные, неизменяемого и изменяемого шага.

Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки.

Винт неизменяемого шага имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.

Винт фиксированного шага имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.

Винт изменяемого шага имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.

Рис. 1 Воздушный двухлопастный винт неизменяемого шага

Рис. 2 Воздушный винт В530ТА Д35

По диапазону углов установки лопастей воздушные винты подразделяются:

на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на легкомоторных самолетах;

на флюгируемые - угол установки меняется от 0 до 90°;

на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким винтом создают отрицательную тягу и сокращают длину пробега самолета.

К воздушным винтам предъявляются следующие требования:

винт должен быть прочным и мало весить;

должен обладать весовой, геометрической и аэродинамической симметрией;

должен развивать необходимую тягу при различных эволюциях в полете;

должен работать с наибольшим коэффициентом полезного действия.

На самолетах Як-18Т, Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 2).

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.

Рассмотрим геометрические характеристики винта.

Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.


Рис. 3. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане

Рис. 4 Диаметр, радиус, геометрический шаг воздушного винта

Рис. 5 Развертка винтовой линии

Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.

Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 3).

Диаметром винта называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.

Геометрический шаг винта - это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 4).

Угол установки лопасти винта - это угол наклона сечения лопасти к плоскости вращения винта (Рис. 5).

Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом . Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:

(3.1)

Шаг винта будет тем больше, чем больше угол установки лопасти . Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом (сечения имеют разный шаг).

Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.

Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называетсяноминальным, а угол установки этого сечения - номинальным углом установки .

Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 4).

Поступь воздушного винта - это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Н п можно найти по формуле

(3.2)

Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.

Разность между значением геометрического шага и поступью воздушного винта называетсяскольжением винта и определяется по формуле

S = H - H n . (3.3)

СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА

К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.

Углом атаки элементов лопасти винта называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 6).

Рис. 6 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти

Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна

Где n с - обороты двигателя.

Поступательная скорость -это скорость самолета V . Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U .

При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.

Рассматривая Рис. 6, а, нетрудно заметить, что:

Когда воздушный винт вращается, а поступательная скорость равна нулю (V =0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти ;

При поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);

Угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;

Результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника

(3.5)

Чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.

В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v , которую называют скоростью подсасывания. В результате истинная скорость W" будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки " будет отличаться от угла (Рис. 6, б).

Анализируя вышесказанное, можно сделать выводы:

при поступательной скорости V =0 угол атаки максимальный и равен углу установки лопасти винта;

при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;

при большой скорости полета угол атаки лопастей может стать отрицательным;

чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.

Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.

Сила тяги винта возникает в результате действия аэродинамической силы R на элемент лопасти винта при его вращении (Рис.1).

Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению Х элемента лопасти винта.

Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р .

Тяга винта зависит от диаметра винта Д , числа оборотов в секунду n , плотности воздуха и подсчитывается по формуле (в кгс или Н)

Где - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-18Т, Як-52 и Як-55 - В530ТА-Д35 равен 1,3.

Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.

Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.

Сила сопротивления вращению определяется по формуле

(3.7)

Где Сх л - коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;

W - результирующая скорость, м/с;

S л - площадь лопасти;

К - количество лопастей.


Рис.1 Аэродинамические силы воздушного винта.

Рис. 2. Режимы работы воздушного винта

Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:

М тр в r в (3.8)

Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле

(3.9)

Где N e -эффективная мощность двигателя.

Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. , а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X = R . Это режим нулевой тяги (Рис. , б).

При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. , в).

При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. , г).

Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.

На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.

ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА.

С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.

Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.

Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 7. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.

Рис. 7 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-18Т, Як-52 и Як-55 с воздушным винтом В530ТА-Д35

ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.

Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.

Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.

Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент М т, равный произведению
, был равен крутящему моменту двигателя М кр, равному произведению F d ,. т.е. М т =М кр или =F d (Рис. 8).

Рис. 8 Тормозящий момент воздушного винта и крутящий момент двигателя

Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.

Увеличение оборотов двигателя приводит к увеличению М кр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.

МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА

Эта мощность затрачивается на преодоление сил сопротивления вращению винта.

Формула для определения мощности воздушного винта (в л. с.) имеет вид:

(3.10)

Где - коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)

Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.

С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.

С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.

Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.

Работа, производимая силой тяги воздушного винта за 1 сек. при движении самолета, называется тягой или полезной мощностью воздушного винта.

Тяговая мощность воздушного винта определяется по формуле

(3.11)

Где Р в - тяга, развиваемая воздушным винтом; V-скорость самолета.

С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА.

ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается . Он определяется по формуле

(3.12)

Рис. 9 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 10 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 11 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

Np - потребная мощность.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

Рис. 12 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 13 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 14 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 9.

График Рис. 10 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

Рис. 15 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

Снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

Сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).


Рис. 16 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя N e будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 16 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей возрастает от своего минимального значения мин до максимального макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 16, а видно, что угол атаки лопасти перед взлетом (V =0) за счет перетекания воздуха со скоростью V немного отличается от угла наклона лопасти на величину ф мин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 16, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение р макс (Рис. 16, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Стяжной винт выполняет ответственную работу, выдерживая иногда нагрузку до 3 тонн, но есть и более простые задачи, для которых существуют менее технологичные крепежные приспособления. Рассмотрим определение и задачи данного класса изделий для строительного монтажа и промышленной сборки.

Шуруп, болт и винт – как не перепутать?

Внешний вид винтового соединения знаком многим, ведь даже крышка вашего ноутбука или стенка системного блока компьютера прикручена именно таким изделием. Но тот, кто немного знаком с другими видами крепежа, но еще не очень хорошо освоился в этой области, сходу задаст нам вопрос: «Чем же отличаются шурупы, болты и винты»? Сразу же уберем один явно выпадающий вариант – , его конструкция не вписывается в этот ряд, потому что он имеет заостренный конец в резьбовой части, это позволяет ему входить в поверхность без предварительно сделанного отверстия.

А вот болт и винт практически близнецы по конструкции, так как же разделить их? Во-первых, имеет значение способ соединения или направление нагрузки. Болт хорошо держит нагрузку, которая прилагается перпендикулярно соединенным деталям, а вот винт успешно справляется с усилием вдоль или параллельно оси, по которой скреплены детали, не позволяя стыку раскрыться. Во-вторых, их различает способ фиксации. Болт всегда работает в паре с гайкой, проходя насквозь двух соединяемых элементов, а винт вкручивается в резьбовое отверстие детали и держится только за счет резьбового взаимодействия.

Также эти крепежи отличаются по способу закрепления, например, винт требует для этого или торцевой ключ, а вот болт согласен работать лишь с гаечным ключом. Отсюда и различие в шлицах и головках. Также болт не может быть подвижным, вернее детали на нем вращаться не могут вокруг его оси, а некоторые виды винтов дают такую возможность, чтобы детали могли перемещаться. Еще можно привести в качестве различия внешность закрученного крепежа и его размеры. Винт может быть маленьким, и его головка часто имеет возможность утапливаться в деталь, а вот болт обычно массивен, и головка спрятаться заподлицо не может.

Нержавеющие винты – конструкция и происхождение

Раз уж с двойниками мы разобрались, пора уже познакомиться с винтом более подробно. Как уже понятно, это крепеж, который имеет головку, через которую мы можем воздействовать на изделие с помощью закручивающего инструмента, и резьбу на корпусе, за счет которой он держится в детали. Он применяется в сборке различных механизмов и конструкций, детали должны иметь готовое отверстие, причем с нарезанной резьбой. Иногда винт может выступать в роли соединительного элемента, на котором детали могут вращаться или перемещаться вдоль резьбы.

Тяжело сказать, в какой момент этот крепежный вариант получил наибольшее развитие, но примитивные его формы были известны еще в Древней Греции за авторством Архимеда. А в наше время более заметную роль это изделие стало играть с появлением тяжелой промышленности и изобретением машин. Миниатюризация винтов начала происходить с появлением все более мелкой техники, например, наших карманных гаджетов, а более амбициозные производители даже придумывают оригинальные шлицы под свои винты, чтобы никто не мог их раскрутить, кроме сервисных центров (например, Apple ).

Данные крепежные изделия могут изготавливаться из множества материалов, но привычная уже всем сталь лидирует, причем практически все винты нержавеющие, ведь соединение обычно внешнее и подвергается воздействию влаги, как прямому, при разливании жидкости прямо на устройство, так и просто атмосферной влажности. Состоит винт из цилиндрического стержня, на который нанесена резьба (частично или полностью по всей длине), головки и подголовника , последний элемент вовсе необязателен, часто он способен уберечь винт от самораскручивания.

Классификация: крепежный, стяжной винт и другие

Основная классификация предусматривает два больших класса винтов: крепежный и установочный . Однако можно выделять классы и по размеру, виду головки, шлица, диаметру и многим другим характеристикам. Установочные разновидности крепежа должны четко фиксировать две детали друг относительно друга, для этого у них даже имеются особенные нарезки на концах, чтобы проворачивание после фиксации не происходило ни вперед, ни назад. Также концы часто имеют определенную геометрическую форму, чтобы предотвратить вращение.

Примером таких соединений является и стяжной винт, который представлен в виде длинного стержня (шпильки), полностью покрытого резьбой. Он вставляется в две детали, на него наживляются специальные гайки с двух сторон от изделий, эти гайки при вращении сдвигают части конструкции ближе. Крепежный винт служит для соединения деталей, которые потом можно также легко разъединить при желании и наличии инструментов. Он выглядит классически – головка и стержень с резьбой. Фиксация происходит совсем просто: прикладывается одна деталь к другой, наживляется в месте отверстия винт и закручивается. На этом работа закончена.

Именно такие изделия отличаются формами шлица и головки, преследуются при этом разные цели, иногда это даже защита от мародеров. Так было во времена Советов, когда воровали номерные знаки с автомобилей или колеса, тогда придумали наборы «секреток», в которых винты шли с особой формой шлица, и к нему индивидуальный ключ, который был только в этом наборе. Именно крепежные виды соединений, как самые распространенные, помогают проследить закономерности, по которым производится маркировка винтов.

Существует 11 классов прочности, которые мы сейчас научимся расшифровывать. Обозначаются они двумя цифрами, разделенными точкой. Первое число, если его умножить на 100, показывает сопротивление, которое временно может оказать изделие без разрушения, измеряется в Н/мм 2 . Вторая цифра умножается на 10 и показывает проценты, отражающие отношение «предел текучести/сопротивление». Если эти числа перемножить и опять увеличить в 10 раз, то получится предел текучести в Н/мм 2 .

Начинаются классы от маркировки 3.6, заканчиваются 12.9. Самый популярный и оптимальный вариант – 8.8.


Виды винтов и приемы от самораскручивания

Раз уж винт ничем не фиксируется с другой стороны отверстия, то возникает вопрос, как же он не раскручивается? Хоть сама физика винтового соединения рассчитана так, чтобы этого не происходило, в особо экстремальных для крепежа условиях самоотвинчивание все же происходит. Это вибрации, удары, тряски. В промышленности уже предусмотрели такие случаи и разработали несколько приемов, чтобы даже в динамических условиях такого не происходило.

Первым вариантом служит создание дополнительного трения, добиваются этого накладкой под головку винта. Способствуют созданию таких условий контргайки, подкладки, шайбы. Иногда даже в разъем до вкручивания винта устанавливают пружину, а сверху уже закручивают крепеж, так создается дополнительное трение по резьбе, ведь пружина пытается вытолкнуть винт из отверстия. Хорошо решают такие проблемы различного вида шплинты, деформируемые детали, которые могут отгибаться после установки, мешая раскручиваться основному крепежу, проволочные замки, когда в головках винтов есть отверстия, и через них протягивается проволока между несколькими соседними изделиями.

Также используется метод изменения самого винта, например, его головки или другого конца, но это может затруднить раскручивание такого соединения вовсе. И даже лак или краска могут спасти крепеж от саморазвинчивания, капельку наносят либо под головку, либо по ходу резьбы, либо вовсе заливают сверху уже установленный винт.

Сопутствующие товары

    Часто являются лучшим способом крепления вещей вместе. Два других распространенных метода, это гвозди и склеивание часто быстрее и требует меньше подготовительной работы, но и производить демонтаж при применении гвоздей или клея сложнее, чем при использовании винтового соединения., да и надежность винтового соединения намного надежнее.

    Выбор правильного винта на работу может быть довольно сложной, так как существуют различия в материалах, покрытая отделки, типах голов винта, размеров и типов резьбы.

    В дополнение к различным стилям голов есть два основных стиля - традиционный прямой шлиц и так называемая крестовая стиле. К сожалению, есть три крейцкопфный стилей, которые могут быть трудно идентифицировать. Самый знакомый - Pozidriv находится в основном на шурупы. Более поздние Supadriv Голова похожа и сказал, чтобы дать больше власти между винтом и отверткой, хотя на практике с шурупами разница не значительна. Третий стиль, известный как Phillips, находится в основном на машине и саморезов установлен на продукции, производимой на континенте и на Дальнем Востоке.

    Традиционные щелевой головкой превращаются с помощью одного слота, в котором отвертка должна плотно прилегать. Поскольку слот размер варьируется в зависимости от винта, диапазон отвертки необходимы, чтобы справиться со всеми различных размеров винтов могут быть использованы. На практике, отвертку неправильного размера часто используются, и, если он слишком мал, лезвие может легко соскользнуть или ездить из гнезда.

    Крестообразный шлиц имеют то преимущество, что его легче устанавливать, чем обычные винты и легче обращаться, когда это невозможно, чтобы убедиться, что лезвие отвертки и головки винта точно в линию. Еще одним преимуществом системы является то, что Pozidriv только три отвертки точек, необходимых для покрытия всех размеров винта. (№ 2 размера является наиболее распространенным.) Pozidriv Отвертка также может быть использован для винтов Supadriv но Филлипс винтов нужен специальные биты.

    Крестообразный шлиц действительно есть недостатки, если их слоты заполняются краской (как это часто бывает на дверные петли), вы будете иметь большие трудности в очистке их достаточно хорошо, чтобы получить отвертки в, в то время как обычные с прямым шлицом головки легко очищается с отделкой ножом или ножовкой лезвия.

    Большинство винтов предназначены для использования в дереве, который простирается примерно на 60 процентов пути от кончика к голове, оставив часть пустых немного толще хвостовика. Любой винты найден, которые имеют темы, протяженностью по всей длине должны быть рассмотрены внимательно. Они могут быть кифара саморезы предназначены для крепления металлических или Twinfast винты предназначены для использования в ДСП, но полезно для общего деревообработки.

    Самая последняя разработка в поперечном головкой является Supascrew. Это имеет более тонкий стержень, чем обычные винты (так меньше шансов разбить дерево) и закаленной, что делает его менее вероятно, будут повреждены. Двойная резьба имеет более крутой шаг (который делает винт быстрее поставить в) и острее точки, чем обычно. Supascrews идеально подходит для ДСП, но полезно для других пород дерева. Прямой шлиц - Mastascrew-также доступны.

    Типы головы

    Две основные формы голова с круглой головкой и потайными, и оба доступны с крестовой или прямой шлиц.

    Круглый головкой используются в основном для проведения тонких материалов, которые не могут взять с потайной головкой. Как правило, это означает, крепления металлических предметов в лес в позиции, где форма и внешний вид головы скрыты или документов не имеет значения. С этой главы вы должны просверлить отверстие только оформление и направляющее отверстие.

    Винты с потайной головкой формируются так, чтобы их головки могут быть утоплены в поверхность верхнего материала вы фиксации. Они менее навязчивой, чем круглые головки винтов и должны использоваться там, где громоздкие голове не может быть терпимо, такие как крепления петель. Помимо необходимости просверлить отверстие оформления и направляющее отверстие, вы можете сделать конусное отверстие для головы с небольшим зенковки особенно при фиксации металла или древесины. С мягкой древесины, затягивая винт, чтобы вытащить голову в лес может оказаться недостаточно.

    Третий тип винта, известный как полупотайной, является своего рода комбинацией двух других. Они используются для крепления дверных ручек и других видимых оборудования. Руководители не торчат слишком далеко, но по-прежнему держать конца отвертки от аппаратного обеспечения.

    Винты с потайной головкой обоих типов могут быть использованы с шайбами для защиты древесины под голову или чтобы избежать необходимости делать потайные отверстия.

    Колпачки - в коричневый или белый - может быть использован для покрытия головки винтов. Они подходят либо в кросс-глава выемки или в зенковкой отверстие, в которое винта утоплена.

    Материалы и отделка

    Наиболее широко используемый материал для винтов мягкой стали. Это довольно слабое металла и легко ржавеет.

    При использовании винтов , которые, вероятно, получить влажную, выбирайте те, которые покрыты коррозионно-стойких отделки, такие как кадмий, sheradized или ярко оцинкованные. Вы также можете использовать винты изготовлены из нержавеющего металла, как из алюминиевых сплавов, латуни или нержавеющей стали. Эти три последних типа являются дорогими, сплав алюминия и латуни винты особенно слабы, а иногда ломаются, когда завинчивания их в лиственных пород секрет в том, чтобы поставить в мягкие винты стали первыми.

    Есть несколько других важных вещей, которые необходимо учитывать при выборе винта отделки:

    при фиксации металлических предметов, остерегайтесь химического взаимодействия между металлом и винтом отделкой. Взаимодействие сталей и алюминиевых сплавов особенно часто встречается и в результате коррозии может сделать винты вареньем. Везде, где возможно выбрать винтов с той же отделкой, как металл закрепляется винтами необработанной мягкой стали будет вступать в химическую реакцию с некоторыми лиственных пород - в частности, afrormosia, idigbo и дуба вызывающих изменение цвета древесины. Используйте латуни или винтами из нержавеющей стали, а иногда появление головки винта имеет первостепенное значение. Латуни и стали винты покрыты хромом или никелем (как блестящий) и Pozidriv винтов и Supadriv с яркой отделкой цинка имеются. Хромированные винтов с куполом главы доступны для крепления зеркал и ванных комнат куполообразная голова на самом деле отдельно от головки винта и должен быть ввинчен в крошечном резьбовое отверстие в головке винта раз винт установлен.

Судовые гребные винты изготавливают из антикоррозионных материалов, поскольку они работают в морской воде, являющейся катализатором коррозии. Материалами, используемыми для изготовления гребных винтов, являются алюминиевые сплавы и нержавеющая сталь. Другие используемые материалы - это сплавы никеля, бронзы и алюминия, которые на 10-15% легче других материалов и имеют более высокую прочность.

Процесс изготовления гребных винтов включает крепление определенного числа лопастей на ступице с помощью сварки, или же винт изготавливается из единой поковки. Кованые лопасти более надежны и обладают большей прочностью, но являются более дорогостоящими, по сравнению со сварными лопастями. При вращении в водной среде, за счет разности давлений на кромках лопастей, гребной винт создает упор, движущий судно.

Такой вид движителей, как гребные винты, постоянно развивается и усовершенствуется. Но сначала рассмотрим классификацию традиционных гребных винтов. Классификацию гребных винтов можно представить в следующем виде.

Типы гребных винтов

Гребные винты классифицируются по ряду факторов.

А) Классификация по количеству лопастей:

Количество лопастей гребного винта может варьироваться от трех до четырех и иногда даже до пяти. Однако наиболее частым случаем является наличие у винта трех или четырех лопастей.

Теоретически, наивысшей эффективностью обладал бы винт с двумя лопастями. Но из соображений прочности и необходимости выдерживать высокие нагрузки на судах не используются двухлопастные гребные винты.

Трехлопастной гребной винт

Стоимость изготовления ниже, чем у других типов гребных винтов

Обычно изготавливаются из алюминиевого сплава

Обеспечивают высокую скорость хода судна

Ускорение более высокое, чем у других типов винтов

Э ффективность на малых скоростях хода низкая

Четырехлопастной гребной винт

Стоимость изготовления выше, чем у трехлопастных винтов

И зготавливаются из сплавов нержавеющей стали

И меют более высокую прочность и выносливость

Хорошо работают и при малых скоростях хода

Обеспечивают большую экономию топлива, чем винты других типов

Пятилопастной гребной винт

Стоимость изготовления самая высокая из всех типов гребных винтов

Уровень вибраций самый минимальный из всех типов гребных винтов

Шестилопастной гребной винт

Стоимость изготовления высокая

У шестилопастных винтов область индуцированного давления над винтом меньше

У крупных контейнеровозов, как правило, пяти- и шестилопастные гребные винты

B) Классификация по шагу винта:

Шаг гребного винта можно определить как перемещение, вызванное каждым круговым поворотом винта на 360 градусов.

Винт фиксированного шага (ВФШ)

Лопасти ВФШ стационарно закреплены на ступице. Гребные винты фиксированного шага литые, и позиция лопастей, а значит и шаг винта постоянны и не могут быть изменены в процессе эксплуатации винта. Такие винты обычно изготавливают из медных сплавов.

ВФШ прочны и надежны, поскольку не содержат механических деталей и гидравлики, в отличие от винтов регулируемого шага (ВРШ). Стоимость изготовления, монтажа и эксплуатации значительно ниже, чем у ВРШ. Однако маневренность судна с ВФШ ниже, чем у судна с ВРШ. Винты данного типа устанавливают на судах, не требующих высокой маневренности.


Винт регулируемого шага (ВРШ)

У ВРШ возможно менять шаг гребного винта за счет поворота лопасти вокруг вертикальной оси с использованием механических компонентов и гидравлики. Это позволяет избавиться от оборудования, необходимого для реверса. Повышается маневренность судна и эффективность работы двигателя.

Недостатком является возможность протечек гидравлики и загрязнения водной среды маслом. Кроме того, такой гребной винт сложен в изготовлении и монтаже на судне, а также требует особого внимания при эксплуатации судна.

Эффективность ВРШ несколько ниже, чем у ВФШ тех же размеров из-за большей ступицы, в которой нужно размещать механизм поворота лопастей и гидравлику. А гребные винты, как правило, более эффективны с увеличением их диаметра.

Для повышения эффективности работы гребные винты снабжают специальными насадками. Такие винты включают помимо самого винта кольцевую насадку, внутри которой размещается гребной винт. Винты с насадками успешно используются при необходимости создания дополнительного упора на малых скоростях хода. Обычно винты этого типа используются на буксирах-якорезаводчиках, на рыболовных траулерах, где за счет насадок обеспечивается от 40 до 50% упора винта при малых и близких к нулю скоростях хода. Иногда насадки делают поворотными. Но все это устройства, повышающие эффективность работы традиционных гребных винтов.

Усовершенствования в конструкциях винто-рулевого комплекса

Эффективность работы винто-рулевого комплекса может повышаться за счет добавления деталей как перед винтом, так и позади гребного винта. Добавление таких деталей в виде плавников или ребер является одним из способов снижения потерь мощности и экономии топлива. Большинство подобных устройств проходят предварительные испытания на моделях с тщательным замером всех характеристик и параметров перед установкой их на гребные винты коммерческих судов. Потери мощности винта, как правило, связаны с образованием спутных вихрей, устранить которые, и пытаются с помощью добавления таких деталей. Целью подобных инноваций является создание наиболее благоприятных условий для работы гребного винта. Насадки, плавники, сопла, бульбы и другие устройства используются для снижения требуемой мощности и повышения скорости судна.


Кольцевые насадки являются наиболее старым видом устройств, повышающих эффективность работы гребного винта. Такие насадки были изобретены немецким инженером Людвигом Кортом в 1930-е гг. и называются насадками Корта или кольцевыми насадками. В наши дни подобные насадки также продолжают использоваться на судах, где при малых скоростях хода требуется повышенный упор гребного винта.

Насадка Мьюиса (Mewis Duct) и полупреднасадка проф. Шнееклюта (Wake Equalizing Duct - WED)

Насадка Мьюиса и полупреднасадка проф. Шнееклюта являются двумя примерами устройств, устанавливаемых перед гребным винтом, использование которых основано на опыте, полученном при исследованиях и эксплуатации насадок Корта. Эти устройства используются на крупных коммерческих судах. Со времени ввода на рынок в 2010 г. насадка Мьюиса привлекла внимание как судовладельцев, так и судостроителей. Насадкой на настоящий момент оснащены 62 судна, и еще для 250 судов заказана установка данного устройства. Устройство используется на танкерах, балкерах и фидерных контейнеровозах.

Полупреднасадка проф. Шнееклюта была изобретена в 1980-х гг. С тех пор устройство применялось на 1500 судах океанского плавания. Это устройство идеально подходит для судов с полными обводами, таких как танкеры и контейнеровозы, эксплуатируемые при средней скорости хода 19 узлов. Проф. Шнееклют анонсировал экономию топлива в размере 12%, но на практике результаты были более скромными, хотя и значительными. Годовая экономия топлива в размере всего 3,5% на деле для контейнеровоза грузовместимостью 2500 ДФЭ означает ежегодную экономию 550 т топлива, а это представляет весьма существенную экономию для транспортной компании.

Инновации в конструкции винто-рулевого комплекса

Статор с лопатками на ступице гребного винта


Для повышения эффективности насадки могут монтироваться впереди гребного винта. Корпорация DSME разработала статор с лопатками на ступице гребного винта, который является альтернативой установке кольцевых насадок и тоннелей.

Разработка устройства, представляющего из себя ряд лопаток статор,а закрепленных в кормовой части корпуса перед гребным винтом, велась в течение десяти лет, и его установка создает дополнительное сопротивление движению судна. Однако создаваемый лопастями несимметричный поток создает более благоприятные условия для вращения винта и, таким образом, повышает его эффективность.

Так же, как и в случае насадок, данное устройство наиболее эффективно при установке на крупных судах, таких как танкеры и контейнеровозы. Установка первого устройства на крупнотоннажный танкер 3 класса дедвейтом 320000 т, принадлежавший компании Kristen Tankers, позднее переименованной в Maran, показала снижение потребления топлива на 4% и небольшое увеличение скорости. Крупная европейская судоходная компания заказала установку этих систем на 10 принадлежащих ей судов класса "Post-panamax" и сообщила об уменьшении потребления топлива и сокращении выбросов в результате этого.

Настолько же эффективны и доступны в установке и эксплуатации, устройства размещаемые за гребным винтом. Два из этих устройств - крыльчатая наделка с прямыми лопастями на ступице гребного винта (Propeller Boss Cap Fin - PBCF) и крыльчатая наделка с изогнутыми лопастями на ступице гребного винта (Propeller Cap Turbine - PCT) могут заменять обычный обтекатель гребного винта. Оба устройства используют вихревые потоки, образующиеся при вращении винта, для повышения его эффективности.

Рис.7. Внешний вид крыльчатой наделки с прямыми лопастями на ступице гребного винта (Boss Cap Fins).

Крыльчатая наделка с прямыми лопастями на ступице гребного винта представляет собой закрепленные на обтекателе винта прямые лопасти, а в крыльчатой наделке с изогнутыми лопастями на обтекателе устанавливаются искривленные лопасти.

Впервые устройство PBCF было изготовлено в конце 80-х гг. и с тех пор было установлено более 2000 устройств, которые, по заявлениям экспертов, обеспечивают экономию в 3-5%. Однако на малых скоростях эффективность данных устройств снижается.

Так же как и системы, размещаемые перед гребным винтом, PBCF и PCT являются относительно недорогими и несложными системами, которые могут монтироваться в дополнение к уже установленной пропульсивной системе. А, по утверждениям экспертов, окупаемость инвестиций в PBCF составляет один год, при том, что установка устройства на винт может быть произведена в течение двух дней без захода судна в сухой док.

Таким образом, за счет установки этих простых легко монтируемых устройств может достигаться экономия топлива. А поскольку стоимость топлива растет, то эти системы обеспечивают быструю окупаемость, заняв за счет этого свою долю рынка.

Системы, размещаемые в дополнение к гребным винтам, старых и новых типов позволяют уменьшить расходы судовладельцев и судовых операторов без необходимости сдавать на слом старые суда и инвестировать в новые экологичные проекты.