Предварительные ламповые унч схемы своими руками. Ламповый усилитель своими руками: пошаговая инструкция, схемы, материалы. Ламповый усилитель мощности звука Предварительные унч на лампах

— большинство ценителей качественной музыки, умеющие обращаться с паяльным оборудованием и имеющие определенный опыт по ремонту радиотехники, могут попробовать своими силами собрать ламповый усилитель высокого класса, который обычно называют Hi-End. Ламповые аппараты такого типа относятся во всех отношениях к особенному классу бытовой радиоэлектронной аппаратуры. В основном они обладают привлекательным дизайном, при этом ничего не закрыто кожухом — все на виду.

Ведь понятно, чем больше видно установленный на шасси электронных компонентов, тем больше авторитет у аппарата. Естественно и параметрические значения лампового усилителя существенно превосходят модели выполненные на интегральных или транзисторных элементах. Вдобавок к этому, при анализе звучания лампового устройства все внимание отдается персональной оценке звука, нежели изображению на экране осциллографа. К тому же отличается незначительным набором используемых деталей.

Как выбрать схему лампового усилителя

В случае выбора схемы предварительного усилителя не бывает особых проблем, то при выборе подходящей схемы оконечного каскада могут создаться затруднения. Ламповый усилитель мощности звука может иметь несколько вариантов исполнения. Например бывают аппараты однотактные и двухтактного типа, а также имеют различные режимы работы выходного тракта, в частности «А» либо «АВ». Выходной каскад однотактного усиления является по-большому счету образцом, потому как находится в режиме «А».

Этот режим работы характеризуется наименьшими величинами нелинейных искажений, но КПД у него не высокий. Также и мощность на выходе такого каскада не очень большая. Следовательно, при необходимости озвучивания внутреннего пространства средних размеров потребуется двухтактный усилитель, с режимом работы «АВ». Но когда однотактный аппарат может быть выполнен только лишь с двумя каскадами, один из которого предварительный, а другой усиливающий, то для двухтактной схемы и ее корректной работы понадобится драйвер

Но если однотактный ламповый усилитель мощности звука может состоять всего из двух каскадов – предварительного усилителя и усилителя мощности, то двухтактной схеме для нормальной работы требуется драйвер или каскад образующий два напряжения идентичной амплитуды, сдвинутые по фазе на 180. Выходные каскады, независимо от того однотактный он или двухтактный, предполагают наличие в схеме выходного трансформатора. Который выполняет роль согласующего устройства межэлектродного сопротивления радиолампы с малым сопротивлением акустики.

Настоящие почитатели «лампового» звучания утверждают, что схема усилителя не должна иметь каких бы то ни было полупроводниковых приборов. Поэтому выпрямитель блока питания должен быть реализован на вакуумном диоде, который специально разработан для высоковольтных выпрямителей. Если вы намерены повторить рабочую, проверенную схему лампового усилителя, то не нужно сразу собирать непростое двухтактное устройство. Для озвучивания небольшого помещения и получения идеальной звуковой картины, в полной мере хватит однотактного лампового усилителя. К тому же его проще изготовить и настроить.

Принцип сборки ламповых усилителей

Существую определенные правила монтажа радиоэлектронных конструкций, в нашем случае — это ламповый усилитель мощности звука . Поэтому перед началом изготовления аппарата, желательно бы хорошенько изучить первостепенные принципы сборки таких систем. Главным правилом при сборке конструкций на вакуумных радиолампах, является разводка соединительных проводников по максимально короткому пути. Наиболее эффективны методом считается воздержание от применения проводов в тех местах, где можно обойтись без них. Постоянные резисторы и конденсаторы необходимо устанавливать прямо на панельки ламп. При этом, в качестве вспомогательных точек нужно применять специальные «лепестки». Такой способ сборки радиоэлектронного устройства именуется «навесной монтаж».

На практике, при создании ламповых усилителей печатные платы не применяются. Также, одно из правил гласит — избегайте прокладки проводников параллельно друг другу. Однако такая, на первый взгляд беспорядочная разводка считается нормой и вполне оправдана. Во многих случаях, когда усилитель уже собран, в динамиках слышен фон низкой частоты, его обязательно нужно убирать. Первостепенную задачу выполняет правильный выбор точки «земля». Есть два способа организовать заземление:

  • Соединение всех проводов идущих на «землю» в одну точку — называется «звездочка»
  • Установка по периметру платы энергоэффективной электротехнической медной шины, а к ней уже припаивать проводники.

Выверять место для точки заземления нужно путем эксперимента, прослушивая наличие фона. Чтобы определить откуда исходит фон низкой частоты, нужно сделать так: Нужно методом последовательного эксперимента, начиная с двойного триода предварительного усилителя, закорачивать сетки ламп на «землю». В случае заметного снижения фона, станет понятно, цепь именно какой лампы «фонит». А далее, также опытным путем нужно пытаться устранить эту проблему. Существуют вспомогательные методы, которые обязательны к применению:

Лампы предварительного каскада

  • Электровакуумные лампы предварительного каскада нужно обязательно закрывать колпачками, а их в свою очередь заземлить
  • Корпуса подстроечных резисторов, так же подлежат заземлению
  • Провода накала ламп требуется свить

Ламповый усилитель мощности звука , вернее сказать, цепь накала лампы предварительного усилителя допускается запитывать постоянным током. Но в таком случае придется в блок питания добавить еще один выпрямитель собранный на диодах. А использование выпрямительных диодов сам по себе нежелателен, так как ломает конструктивный принцип изготовления лампового Hi-End усилителя без применения полупроводников.

По парное размещение выходного и сетевого трансформаторов в ламповом устройстве, является достаточно важным моментом. Данные компоненты устанавливаться должны строго вертикально, тем самым удается уменьшить уровень фона из сети. Одним их эффективных способов установки трансформаторов является их помещение в кожух, выполненный из металла и заземленный. Магнитопроводы трансформаторов так же нужно заземлять.

Ретро-компоненты

Радиолампы, это приборы из далеких времен, но вновь вошедшие в моду. Поэтому нужно комплектовать ламповый усилитель мощности звука такими же ретро-элементами, которые устанавливались в первоначальных ламповых конструкциях. Если это касается постоянных резисторов, то можно применить углеродистые резисторы, имеющие высокую стабильность параметров либо проволочные. Однако эти элементы обладают большим разбросом — до 10%. Поэтому для лампового усилителя лучшим выбором будет использование малогабаритных прецизионных резисторов с металлодиэлектрическим проводящим слоем — С2-14 или С2-29. Но цена таких элементов существенно высокая, то взамен им вполне подойдут и МЛТ.

Особо ревностные приверженцы ретро-стиля достают для своих проектов «мечту аудиофила». Это — углеродистые резисторы ВС, разработанных в Советском Союзе специально для применения в ламповых усилителях. При желании их можно отыскать в ламповых радиоприемниках 50-60 годов выпуска. Если по схеме резистор должен иметь мощность более 5 Вт, то тогда подойдут проволочные резисторы ПЭВ, покрытые стекловидной теплостойкой эмалью.

Конденсаторы, применяемые в ламповых усилителях в основном не критичны к тому или иному диэлектрику, а также к самой конструкции элемента. В трактах настройки тембра можно использовать конденсаторы любого типа. Также и в цепях выпрямителя блока питания можно устанавливать любого типа конденсаторы в качестве фильтра. При конструировании усилителей низкой частоты высокого качества, большое значение имеют установленные в схеме разделительные конденсаторы.

Именно они оказывают особое влияние на воспроизведение натурального, не искаженного звукового сигнала. Собственно благодаря им мы получаем исключительный «ламповый звук». При выборе разделительных конденсаторов, которые будут устанавливаться в ламповый усилитель мощности звука , нужно обратить особое внимание на то, чтобы ток утечки был как можно меньшим. Потому, что от данного параметра напрямую зависит корректная работа лампы, в частности ее рабочая точка.

Помимо этого, не нужно забывать, что разделительный конденсатор подключен к анодной цепи лампы, отсюда следует, что он находится под большим напряжением. Так, что такие конденсаторы должны иметь рабочее напряжение не менее 400v. Одними из лучших конденсаторов работающих в роли переходного, считаются емкости от фирмы JENSEN. Именно эти емкости применяются в топовых усилителях HI-END класса. Но их цена очень высокая, доходящая до 7500 рублей за один конденсатор. Если использовать отечественные компоненты, то наиболее подходящими будут например: К73-16 либо К40У-9, однако по качеству они значительно уступают фирменным.

Однотактный ламповый усилитель мощности звука

Представленная схема лампового усилителя имеет в своем составе три отдельных модуля:

  • Предварительный усилитель с возможностью регулировки тембра
  • Выходной каскад, то-есть сам усилитель мощности
  • Источник питания

Предусилитель изготавливается по простой схеме с возможностью регулировать усиление сигнала. А также имеет пару отдельных регуляторов тембра низкой и высокой частоты. Для повышения эффективности работы аппарата, в конструкцию предварительного усилителя можно внедрить добавить эквалайзер на несколько полос.

Электронные компоненты предварительного усилителя

Представленная здесь схема предварительного усилителя выполнена на одной половине двойного триода 6Н3П. Структурно предусилитель может быть изготовлен на общем каркасе с выходным каскадом. В случае исполнения стерео варианта, то естественно образуются два идентичных канала, следовательно, триод будет задействован полностью. Практика показывает, что приступая к созданию какой-либо конструкции, лучше всего сначала воспользоваться монтажной платой. А после налаживания уже компоновать в основном корпусе. При условии правильной сборки, предусилитель без проблем начинает работать синхронно с подачей напряжения питания. Однако на этапе настройки нужно выставить напряжение анода радиолампы.

Конденсатор в выходной цепи С7 можно применить К73-16 с номинальным напряжением 400v, но желательно от фирмы JENSEN, который обеспечит лучшее качество звучания. Ламповый усилитель мощности звука не особо критичен к электролитическим конденсаторам, поэтому можно применять любого типа, но с запасом по напряжению. На этапе настроечных работ, во входную цепь предварительного усилителя подключаем генератор низкой частоты и подаем сигнал. На выходе должен быть подключен осциллограф.

Изначально размах сигнала на входе выставляем в пределах 10 mv. Затем определяем значение напряжения на выходе и вычисляем усиливающий коэффициент. Звуковым сигналом в диапазоне 20 Гц — 20000 Гц на входе можно высчитать пропускную способность усиливающего тракта и изобразить его АЧХ. Путем подбора емкостного значения конденсаторов, есть возможность определить приемлемую пропорцию высокой и низкой частоты.

Настройка лампового усилителя

Ламповый усилитель мощности звука реализован на двух октальных радиолампах. Во входной цепи установлен двойной триод с отдельными катодами 6Н9С включенный по параллельной схеме, а оконечный каскад выполнен на довольно мощном выходном лучевом тетроде 6П13С включенным как триод. Собственно, исключительное качество звучания создает именно триод установленный в оконечном тракте.

Чтобы выполнить простую настройку усилителя достаточно будет обыкновенного мультиметра, а чтобы выполнить точную и верную регулировку необходимо иметь осциллограф и генератор звуковых частот. Начинать нужно с установки напряжения на катодах двойного триода 6Н9С, которой должно быть в пределах 1,3v — 1,5v. Выставляется это напряжение подбором постоянного резистора R3. Ток на выходе лучевого тетрода 6П13С должен находится в диапазоне от 60 до 65 mA. Если нет в наличии мощного постоянного резистора 500 Ом — 4 Вт (R8), то его можно собрать из пары двух-ваттных МЛТ с номиналом 1 кОм и включенных параллельно.Все другие, указанные в схеме резисторы можно устанавливать любого типа, но предпочтение все же отдается С2-14.

Точно так же как и в предусилителе, важной составляющей является разделяющий конденсатор С3. Как уже упоминалось выше, идеальным вариантом было бы установка этого элемента от фирмы JENSEN. Опять же, если таковых нет под рукой, то можно использовать и советские, пленочные конденсаторы К73-16 либо К40У-9, хотя они хуже заморских. Для корректной работы схемы, эти компоненты подбираются с наименьшим током утечки. В случае невозможности выполнить такой подбор, то желательно все же купить элементы зарубежных производителей.

Блок питания усилителя

Блок питания собран с использованием кенотрона прямого накала 5Ц3С, обеспечивающий выпрямление переменного тока, в полной мере соответствующий нормам конструирования ламповых усилителей мощности HI-END класса. Если нет возможности приобрести такой кенотрон, то вместо него можно установить два выпрямительных диода.

Установленный в усилителе блок питания не требует какого либо налаживания — включил и все. Топология схемы дает возможность использование любых дросселей имеющих индуктивность не менее 5 Гн. Как вариант: применение таких приборов от устаревших телевизоров. Трансформатор питания, также можно позаимствовать у старой ламповой аппаратуры советского производства. Если есть навыки, то можно изготовить его самостоятельно. Трансформатор должен состоять из двух обмоток с напряжением по 6,3v каждая, обеспечивающие питанием радиолампы усилителя. Еще одна обмотка должна быть с рабочим напряжением 5v, которые подаются в цепь накала кенотрона и вторичную, имеющую среднюю точку. Эта обмотка гарантирует два напряжения по 300v и ток 200 мА.

Очередность сборки усилителя мощности

Порядок сборки лампового усилителя звука такой: вначале делается источник питания и сам усилитель мощности. После того как будет произведены настройки и установка необходимых параметров, подключается предусилитель. Все параметрические замеры измерительными приборами нужно делать не на «живой» акустической системе, а на ее эквиваленте. Это для того, чтобы избежать возможности вывода из стоя дорогостоящей акустики. Эквивалент нагрузки можно изготовить из мощных резисторов или из толстой нихромовой проволоки.

Далее нужно заняться корпусом для лампового усилителя звука. Дизайн можно разработать самостоятельно, либо у кого то позаимствовать. Наиболее доступным материалом для изготовления корпуса, является многослойная фанера. На верхней части корпуса устанавливаются лампы выходного и предварительного каскада и трансформаторы. На фронтальной панели расположены устройства регулировки тембра, звука и индикатор подачи напряжения питания. В конечном итоге у вас может получится устройства наподобие показанных здесь моделей.

) было описано изготовления самого блока Usb кодека, а также фильтра нижних частот. В этой статье будет описана сборка лампового предварительного усилителя. Так как сигнал звуковой частоты с фильтра нижних частот слабоват для раскачки усилителя мощности, то необходимо дополнить конструкцию предварительным усилителем. Сразу была идея сделать «пред» ламповым, так как нравиться работать с лампами, да и звук уж больно хорош!

Да и как звучит:
«Звуковая USB карта с ламповым усилителем!» ))). Ну, перейдем к делу!
В результате умозаключений и раздумий, а также изучения материала вот отсюда и отсюда родилась вот такая схема:


В основу данной схемы был положен стандартный реостатный каскад на триоде:

Усиливаемый сигнал подается на управляющую сетку лампы л1. Под действием этого сигнала в анодной цепи лампы возникает пульсирующий ток, а на сопротивлении нагрузки Ra1 формируется напряжение усиливаемого сигнала. Падение напряжения на резисторе Ra1 с возрастанием анодного тока увеличивается, что приводит к уменьшению напряжения на аноде лампы. при подаче максимального входного напряжения на сетку лампы, напряжение на аноде минимальное и наоборот. Конденсатор Ср1 препятствует прохождению постоянного анодного напряжения на следующие каскады. Резистор Rс1 - резистор утечки сетки - обеспечивает стекание сеточных зарядов на катод, а так же служит для подачи на сетку отрицательного напряжения смещения. Величина сопротивления резистора Rа1 не зависит от частоты, однако, коэффициент усиления такого каскада не остается постоянным во всем диапазоне частот. Уменьшение коэффициента усиления на низших частотах объясняется действием делителя напряжения, образованного конденсатором Ср1 и резистором Rс2. При уменьшении частоты входного сигнала сопротивление конденсатора Ср1 увеличивается, что приводит к перераспределению напряжения на делителе и к уменьшению напряжения, подаваемого на вход следующего каскада. С увеличением частоты сигнала сопротивление конденсатора Ср1 уменьшается до такого значения, что им можно пренебречь по сравнению с сопротивлением резистора Rс2. Однако в определенный момент на величину коэффициента усиления каскада начинают влиять паразитные емкости, например выходная емкость лампы первого каскада, емкость монтажа, а также входная емкость следующего каскада. Эти емкости шунтируют сопротивление нагрузки, тем самым уменьшая напряжение, подаваемое на вход следующего каскада.
На величину коэффициента усиления каскада решающее влияние оказывает величина сопротивления нагрузки Rа1. Однако величина сопротивления резистора Rа1 должна выбираться так, чтобы это не привело к значительному понижению постоянного напряжения на аноде лампы Л1. Резистор Rk1 и конденсатор Ск1 - элементы автоматического смещения. Вообще, сопротивление анодного резистора должно быть в пределах 3-5 (иногда до 10)Ri, где Ri – внутреннее сопротивление лампы. Если оно не указано, применяем основное уравнение лампы m=SRi, где m – коэффициент усиления, S – крутизна характеристики. Все эти значения можно взять из справочников по лампам, коих в интернете море.
Вот такая вот теория. Я выбрал эту схему в связи с простотой расчета и настройки данного каскада. Я применил в своей схеме двойной триод 6Н6П Выбор мой пал на него, потому, что хотелось к предварительному усилителю подключать еще и наушники, а эта лампа очень хорошо подошла для этих целей.
Нашел вот еще программу «Расчет лампового усилителя V1.0»
Решил попробовать просчитать в ней. Сперва добавил параметры лампы 6Н6П в базу данных ламп, так как таковой там не было:


Потом в самой программе произвел расчет:


В принципе, примерно так получилось и у меня, только подкорректировал потом номиналы для параллельного включения триодов.
Включение двух триодов в одной лампе в своей схеме я сделал параллельным. А зачем?
Применение параллельного включения позволяет:
- в два раза уменьшить внутреннее сопротивление лампы
- в два раза увеличить крутизну характеристики
- снизить шумы лампы
Немного пояснений к схеме:
1. Резисторы R5 и R8 необходимы для выравнивания амплитуды сигнала для каждого триода, подбираются экспериментально, это сделано для того, что параметры двух триодов в одном баллоне все таки отличаются друг от друга, особенно коэффициент усиления.
2. Резистор анодной нагрузки сделан общий для обеих триодов и составлен из четырех двух ваттных резисторов, соединенных параллельно для получения необходимого сопротивления, мощность выделяемая на них составляет около 8 Ватт.
3. Электролитические конденсаторы автоматического смещения С2 и С4 зашунтированы пленочными конденсаторами С3 и С5 - шунтирование электролитов не электролитическими конденсаторами (пленочными) улучшает звукопередачу в области высоких частот. Ёмкость их выбирают на один – два порядка меньше ёмкости электролитических.
4. Выходной конденсатор С6 - качественный пленочный, тут я применил «бутерброд» из нашего К73-17 и филиповсские типа МКТ, вот такие:


Как показало потом прослушивание, звучал этот «бутерброд» ох как не дурно!
5. Резистор R10 - нагрузочный для этого каскада.
6. Важный момент по поводу питания накала ламп. Так как у лампы 6Н6П ток накала равен примерно 750-800 мА, а усилителя потребуется два канала, то если запитывать напряжением 6,3 в обе лампы, накалы которых запараллелены, то получим 1,6 Ампера, а питать хочу постоянкой, дабы избавиться от лишнего фона и наводок. Приличный ток на накал получается! Но нити накала двух ламп соединил последовательно и запитал от 12 вольт, ток порядка 800 ма, так что обычного стабилизатора 7812 на небольшом радиаторе хватит «за голову».
Теперь следующий важный момент. В момент включения, когда лампы еще не нагрелись и нити накала разогреваются, на выходе предусилителя, а также на входе последующего каскада будут присутствовать все мыслимые и немыслимые наводки, проще говоря пока лампы не выдут
на свой рабочий режим, вход последующего усилителя мощности будет просто висеть «никуда не подключенным», когда лампы разогрелись, то все это «колдовство» конечно же исчезнет.
Чтоб избавиться от этого неприятного эффекта, собрал простое реле времени, которое включает реле с задержкой около 5 секунд. Реле, в свою очередь, своими нормально замкнутыми контактами, в момент включения коротит выход на общий провод, а по истечении
времени выдержки размыкает выход от общего провода. Вот схема:


Реле использовал наше, отечественное РЭС55. Во-первых, оно герметичное герконовое, во-вторых, в железном корпусе, от корпуса есть отдельный вывод, его соединил с общим проводом, дабы избежать наводок на контакты.


Поставил их две штуки, так как у этого реле только одни нормально замкнутые контакты, катушки их соединил параллельно.
Вот цоколевка этого реле:


Теперь чем все это дело запитать. Тут уже проблем нет, все уже давно пройдено!
Для питания использовал трансформатор ТАН-34


Для питания анодов ламп применил электронный дроссель на полевом транзисторе, как в
Для питания нитей накала - обычный стабилизатор 7812.
Вот, собственно схема:


Полевой транзистор в электронном дросселе используется типа 2SK2996 со стабилитроном внутри. В цепь общего провода стабилизатора 7812 включен диод, чтоб поднять напряжение примерно до 12,6 вольт.
Предварительный усилитель хотел сперва собирать навесным монтажем, но затем передумал. Потратил часика два, но развел плату на два канала. Изготовил плату, впаял детальки.
Ламповые панльки использовал вот такие, немножко их потом доработав

Вот, что получилось:






Блок питания так же был собран на печатной плате:


Файлы печатных плат предусилителя и блока питания
Было произведено прослушивание данного лампового девайса, звук очень достойный, хорошие мясистые не бубнящие низы очень порадовали. Получился, как говорят «теплый ламповый звук». С этой частью все. Следующая часть уже будет финальной, будет описано изготовление светодиодного индикатора уровня, а также оформление всего в корпус, который сейчас пока ищу.

Этот модуль предварительного усилителя с входным коммутатором был разработан французом JL. Vandersleyen для совместной работы с аудиофильскими усилителями мощности любого уровня. Он реализован на пентоде 6Ж32П (аналог EF86), позволяет подключить до четырёх источников сигнала и обеспечивает усиление в 16 дБ . Небольшая отключаемая НЧ-коррекция позволяет компенсировать влияние помещения прослушивания.

Внешний вид конструкции показан на рисунке:

(Увеличение по клику)

Технический характеристики усилителя:

Полоса частот (при неравномерности 1дБ) 10 Гц — 100 кГц
Полоса частот (при неравномерности 0,1дБ) 20 Гц — 50 кГц
Активная коррекция (см. описание) + 3 дБ на 50 Гц
Время нарастания <2 мксек
Искажения <0,1% при амплитуде сигнала 1 В в полосе 100 Гц — 10 кГц (на частоте 1 кГц типичное значение 0,03%)
Максимальный выходной сигнал ~30 В при искажениях до 2% (THD)
Глубина обратной связи — 18 дБ
Соотношение сигнал / шум> 90 дБ
Входное сопротивление 50 кОм
Выходное сопротивление непосредственно усилителя — 5кОм
Выходное сопротивление схемы — потенциометр 100K с логарифмической характеристикой
Разделение каналов > 50 дБ
Входы — RCA
Питание: 6V — 400 мА / 320 В постоянного тока — 7 мА
Размеры 135 х 100 х 30 мм

Благодаря довольно компактным размерам, блок может быть встроен в шасси готового усилителя или использоваться как самостоятельное устройство (с внешним блоком питания).

На рисунке 1 показан принцип работы каскада усиления.

Часть выходного сигнала подается обратно — на вход, в противофазе, для жесткого контроля коэффициента усиления схемы. Таким образом, отрицательная обратная связь глубиной 18 дБ снижает общий коэффициент усиления с +34 дБ до +16 дБ при одновременном снижении собственных искажений каскада.
Из-за уменьшения влияния RC-цепи обратной связи (C11, R31) на низких частотах, усиление схемы в этом диапазоне возрастает. При указанных значениях в 220 кОм и 3,3 нФ обеспечиваются прирост усиления на 3 дБ для частот ниже 100 Гц.(см. далее по тексту)

Предварительный усилитель реализован на пентоде 6Ж32П , который разрабатывался специально для применения во входных каскадах магнитофонов и отличается низким микрофонным эффектом и высокой линейностью.

Характеристика лампы имеет отличную линейность при напряжении смещения -3 В, и анодном напряжении от 50 В постоянного тока, напряжение на второй сетке 180В, на третьей — 0 В (характеристика выделена красным):

(Увеличение по клику)

Принципиальная схема

Схема предварительного усилителя показана на рисунке:

(Увеличение по клику)

Один из четырёх входов выбирается галетным переключателем S1. На схеме не указаны номиналы резисторов R1, R5, R9, R13, они выбираются, исходя из требуемой чувствительности входа.
Входное сопротивление усилителя составляет 50 кОм. Относительно низкое входное сопротивление лампы за счёт отрицательной обратной связи уменьшается ещё больше. Потому входное сопротивление схемы определяется в основном номиналом резистора R19.

Собственное усиление лампы 50, за счёт обратной связи уменьшается до 6,5.
Собственные искажения лампы за счёт ООС снизились до 0,03% при амплитуде сигнала 1В на выходе.

Обратите внимание, что собственный шум лампы , за счёт обратной связи не уменьшается, но при выбранных режимах получаются очень низким: отношение сигнал / шум превышает 90 дБ.

В цепь обратной связи добавлена RC-цепь, чтобы компенсировать потерю усиления на низких частотах, которая обычно возникает из-за недостаточного объёма помещения прослушивания. Как указывалось в начале статьи, подъём составляет 3 дБ для частот ниже 100Гц.

Если подобная функция вам не нужна, элементы C11-C12, D1, K1-K2 можно не устанавливать, а резисторы R31-R32 заменить перемычками.

Установка регулятора громкости на выходе предварительного усилителя является оптимальной для минимизации
соотношения сигнал / шум. При этом риск ввести каскад в режим ограничения исключён, так как для получения максимальной амплитуды сигнала на выходе в 30 В нужен входной сигнал амплитудой 4,6В! (редкий источник способен выдать)

Питание предварительного усилителя.

Напряжение накала ламп подается на контакты на печатной плате. Благодаря этому можно скоммутировать нити накала параллельно, тогда потребуется напряжение 6-6,3 В при токе потребления 400 мА. Или можно соединить нити накала обеих ламп последовательно, тогда потребуется напряжение 12В с током 200мА...

По анодному напряжению усилитель потребляет 7 мА. Если пересчитать номинал резистора R33, можно запитывать усилитель напряжением от 300 до 320 В постоянного тока.

Для включения НЧ-коррекции требуется напряжение +24 В постоянного тока для управления двумя 12-вольтовыми реле.

Конструкция предварительного усилителя

Печатные платы

Все элементы схемы, включая входные разъёмы, реле, галетный переключатель, регулятор громкости монтируются на печатных платах. (рис. 5). Все соединения выполнены на разъёмах, за исключением цепей накала, которые запаиваются непосредственно в плату.

Основная плата

Монтажная плата не имеет особенностей, на ней смонтированы все элементы схемы. Сначала запаиваются 7 контактов 1,3 мм (см. фото конструкции) , затем тринадцать перемычек. Остальные остальные элементы устанавливаются в порядке номеров схемы, последними монтируются потенциометр и галетный переключатель.
Общий провод (земля) подключается между двумя двойными входными разъемами RCA.

Вид платы со стороны проводников:

(Увеличение по клику)

Расположение элементов на плате:

(Увеличение по клику)

Плата ламп

Плата впаивается в основную плату усилителя посредством 5-мм контактов под углом 90 градусов.
Чертёж платы представлен на рисунке ниже:

Расположение элементов на плате ламп показано на рисунке:

Включение

Для проверки усилителя потребуется блок питания на 6 или 12 В для цепей накала и 320 В для анодного напряжения.
При первом включении высокое напряжение желательно подавать от регулируемого источника.
Контрольные значения напряжений указаны на схеме.
При подаче на вход сигнала амплитудой 300 мВ на выходе должен быть сигнал амплитудой около 2 В.

Для проверки НЧ-коррекции потребуется источник +24В.
При включенной коррекции подъём сигнала частотой 60Гц должен составлять 3 дБ .

Результаты измерений

Результаты измерений представлены на осциллограммах ниже.

Реакция усилителя на импульсный сигнал показывает его хорошую устойчивость и малое время нарастания фронтов:

(Увеличение по клику)

Частота среза составляет около 140 кГц при спаде -1дБ.
Уровень искажений при уровне сигнала 1 В меньше чем 0,03%.
Спектральное распределение гармоник и шумов представлены на спектрограммах:

(Увеличение по клику)

Обратите внимание, что в спектре доминирует вторая гармоника . При этом её уровень ниже -70 д Б, что исключает «бархатистый» окрас (свойственный ламповым усилителям, так называемый, тёплый звук) сигнала.
Задача любого усилителя — усиливать сигнал, не внося в него каких-либо изменений.
Этот усилитель с этим справляется отлично!

Общий уровень шумов усилителя до регулятора громкости составляет -90 дБ.

На графике показана АЧХ при включенной цепи НЧ-коррекции:

(Увеличение по клику)

Обратите внимание на низкое влияние коррекции на АЧХ и ФЧХ усилителя. Темброблок Бэксандэла (довольно классическая схема) имеет гораздо большее влияние на выходной сигнал.

Детали конструкции.

Резисторы:
R1, R2, R5, R6, R9. R10, R13, R14: подбираются по необходимой чувствительности входов (или перемычки)
R3, R4, R7, R8, R11, R12, R15, R16, R17, R18: 470 кОм / 0,5 Вт / 1%
R19, R20: 47кОм/1/0,5Вт/1%
R21, R22: 150 кОм / 2 Вт/ 5%
R23, R24: 100 кОм/2 Вт / 5%
R25, R26: 47 кОм/2 Вт / 5%
R27, R28: 1,2кОм/1/0,5Вт/1%
R29, R30: 360 кОм /0,5Вт/ 1%
R31, R32: 220 кОм / 0,5 Вт / 1%
R33 1 кОм/2 Вт/ 5%

Конденсаторы

C1, C2: 1мкФ/50 В / 5 мм,
C3, C4: 1 мкФ / 250 В / 5 мм,
C5, C6: 0,1мкФ/50 В/ 5 мм
C7, C8: 100мкФ/ 6,3 В/ 3, 5 мм,
С9, С10: 470 нФ / 400 В / 15 мм C11,
C12: 3,3 нФ / 100 В / 5 мм
C13: 10 мкФ/400 В/ 5 мм

Разное:

Лампа: V1, V2 — 6Ж32П (EF86)
Диоды: D1 -1N4007
Переменный резистор: P1- 100 кОм (Log/ALPS)
Реле: K1, K2 — SIL / Meder SIL12-1A72-71L
Галетный переключатель: S1 — 5P/2C /Lorlin PT6422
Тумблер: S2 — NKK B12AH
Разъёмы: RCA (сдвоенный) — 2шт., RCA (одинарный) — 1шт.

Заключение

Предварительный усилитель на лампе 6Ж32П получился абсолютно прозрачным для звука, не вносящим ламповой «теплоты» и «бархотистости», со стабильным коэффициентом усиления и низким уровнем шумов.

Небольшая НЧ-коррекция позволяет компенсировать ослабление сигнала в низкочастотной области помещением прослушивания, а компактные размеры конструкции позволяют встроить её в уже готовый усилитель.

Статья подготовлена по материалам журнала Electronique Pratique.

Удачного творчества!

Основой для этого лампового предусилителя будут распространённые однотактные в триодном включении. Мы спроектировали универсальный предварительный усилитель, который будет хорошо работать с широким ассортиментом радиоламп. Лампы можно ставить следующие - двойной триоды (без изменений цоколёвки): 12AU7, 12AV7, 12AY7, 12AT7/12AZ7 и 12AX7.

Схема предусилителя на лампе

Ламповый предусилитель на самом деле очень прост. Регулятор громкости (P1 на схеме) стоит на ламповом выходе, чтобы гарантировать, что уровень шума будет максимально низкий. Входной резистор (470k на схеме) может быть от 100к до 1м. Он нужен чтоб правильно нагрузить источник входного сигнала.

Схема выпрямителя питания лампы

Было решено, что сделаем простой выпрямитель на кенотроне для питания предусилителя. На малых уровнях тока (5-10 мА), падение напряжения в вакуумной трубе диода очень мало - всего 4 В для данного устройства. Пульсации выхода БП составляют 1,2 мВ на 257 В. То есть -107 дБ, короче получается очень тихий блок питания. Обратите внимание, конденсатор после выпрямителя 6CA4 не должен превышать 50 мкФ ёмкости.

Корпус сделан из алюминия, листовой алюминиевый внешний корпус и внутренняя панель. Для упрощения, решили смонтировать все компоненты на верхней панели. После постройки преампа просто вставьте его в корпус.

Блок питания, все компоненты, собраны на левой стороне блока, а компоненты предусилителя справа. Внутри металлический экран между двумя секциями. Одна важная особенность этой конструкции - переключатель ground lift . Всё шасси заземляется через разъем, его контакт заземления. Земля сигнала изолирована от корпуса переключателем ground lift . Это в некоторых случаях позволяет избежать гула, вызванного контуром заземления, когда оба корпуса заземлены через аудиоразъем. Далее показан вид компонентов предусилителя перед испытаниями.

Тестирование универсального лампового предусилителя

Первый шаг после сборки - это питание. Надо проверить все основные точки напряжения в схеме. Все напряжения должны быть в пределах разумной погрешности. Для настроек понадобится сигнал-генератор с регулируемым выход, двухканальный вольтметр переменного тока и осциллограф. Вот фотография устройства, в процессе наладки.

Генератор сигналов позволяет проверять ламповый предварительный усилитель на различных частотах и уровнях входного сигнала, осциллограф показывает форму входного и выходного сигналов, а вольтметр позволяет непосредственно вычислить коэффициент усиления на любой частоте. Вот графики усиления и фазы генерируемых сигналов.

Предупреждение : этот ламповый предусилитель использует высокое напряжение до 270 вольт. Прикосновение к потенциалам напряжения такой величины может привести к травме. Если вы не знакомы с проектами, которые используют эти уровни напряжения, настоятельно рекомендуется изучить технику безопасности.

Этот предварительный усилитель воспроизводит звук высокого качества, который максимально близок к оригиналу. Он выполнен с использованием лампы 5687, которая является двойным триодом. Пусть это малознакомое многим радиолюбителем название вас не пугает: её можно с успехом заменить на наши 6Н1П - 6Н3П.

В схеме лампового усилителя используется светодиодный стабилизатор и выходной трансформатор японской фирмы Тамура A4714. Предварительный усилитель использует двойной разрез лампы 5687, две триодные пробки для каждого канала, с каждого раздела, используя свои собственные сетки сопротивлением 220 Ом и свою пару зеленых 4 вольтовых светодиодов. Двойная секция используется для снижения лампового сопротивления, в результате чего улучшается её совместимость с выходным трансформатором, входная обмотка которого имеет сопротивление 5 кОм, а выходная 600 Ом. Эксплуатационное напряжение лампы 5687 составляет 115 В и 4 В, ток 25 мA. Первоначально была сделана попытка питать накал нити лампы переменным током, однако это привело к неоправданно большим помехам, поэтому используется для нагревателей постоянка.

Источник питания

В блоке питания использует лампа, мощный кенотрон RCA-83. Полупроводниковый аналоговый таймер OMRON применён для задержки питяния анодов ламп, чтобы была возможность при помощи выпрямителя производить разогрев. Последние 2 RC цепочки (резистор 3,6 кОм, конденсатор 220 мкФ и резистор 3,9 кОм, конденсатор 10 мкФ) отдельные для каждого канала, в дальнейшем вместо них планируется ставить CCS, так же для каждого канала свой. Конденсатор на 10 мкФ обязательно поставить из полистирола. Два дросселя 50H, сопротивлением 55 Ом. Для питания нити накала выпрямителя, лампы RCA-83, используется напряжение 5 В. Разогрев ламп 5687 обеспечивает диодный мост, собранный на быстродействующих диодах MUR860, за ним стоят 5 электролитических конденсаторов по 10 000 мкФ каждый. Стабилизатор LM317 совместно с резистором сопротивлением в 1,5 Ом обеспечивает напряжение в 11,5 вольт и ток в 830 мА. Для получения дополнительных сведений о конструкции блока питания рекомендуется смотреть статьи о проектировании источников питания для ламповых усилителей.

Изготовление корпуса

Ширина шасси определяется шириной выходного трансформатора, так как он является наиболее габаритным компонентом. В заготовках необходимо выдержать размеры их сопрягаемых частей. До начала сборки нужно самостоятельно просверлить необходимые отверстия под разъёмы и прочие установочные компоненты.

В окрашенные и высушенные панели вставляются установочные компоненты. Верхняя панель окрашена не была, она подверглась шлифовке и осталась цветом соответствующим цвету натурального алюминия.